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1 Introduction

Proton therapy is a form of radiation therapy primarily used for treating types of cancer
near serially organized tissues such as the liver and the brain. These tissues, if damaged, will
cause the patient severe secondary side effects including death. Proton therapy has extreme
precision and is able to send treatment to narrow regions of tissues. Other advantages is it
minimizes the amount of healthy cells dying so patients can be treated with higher dosages
for fewer treatments without increasing side effects.

For a synopsis, beams of high-energy protons are precisely fired from a particle ac-
celerator to a particular depth in the tumor. Majority of the dose occurs at the proton
beam’s endpoint which is dependent on the initial amount of energy chosen. For a singular
beam, to eliminate the cancer cells, it is crucial that the beam ends at the optimal depth
called the target depth. If the beam is too short, the therapy is not as effective. However,
if the beam surpasses the target depth, the therapy’s ability to eliminate the cancer cells
quickly goes to zero. The maximum dosage of one beam is only capable of treating a small
range of the tumor called the Bragg’s peak region. This is typically unrealistic since most
tumors are larger than one proton beam’s Bragg’s peak region. In order to have the majority
of the dosage covering the full tumor, a proton beam is then modulated to create a spread
out Bragg Peak (SOBP). Though important to understand, we will not focus on the (SOBP).

To analyze the effects of proton therapy, we will examine the densities of the cancer
stem cells (A), the non-proliferating cancer cells (B), and the healthy cells (H) at each time
step using the provided difference equations. We will use cobweb diagrams to help us analyze
each cell type’s steady state and use bifurcation graphs to see how the amount of therapy
will change the orbits.

2 Discrete Proton Therapy Model

Using the provided difference equations, we will model the change of densities in dis-
crete time and space. For the initial conditions for each cell, we assumed H0 = 1−A0 −B0,
same as the researchers. To simplify the complexity of the equations we made further as-
sumptions. Instead of once every 24 hours, we are assuming the same amount of proton
therapy Pt is applied every hour t. Instead of changing between depths of tissue i, we are
only modeling at a constant tissue depth of i = 1 mm. Originally, diffusion was used to
show cells diffusing from tissue depths of high concentration to depths of low concentration.
Already, the diffusion of the non-proliferating cells was negligible because the researchers
assumed the non-proliferating cells make the bulk of the tumor. To simplify, we are further
going to assume the diffusion of the cancer stem cells and the healthy cells are also negligible
due to our constant depth. We will be using a technique called time scale separation be-
cause the cancer stem cells are growing drastically faster per each time step than the healthy
cells. Therefore, we will let the system A reach equilibrium before starting systems for B
and H. Then we will let the system B reach equilibrium. Finally, after letting systems A
and B go to equilibrium, we will start system H and find its equilibrium. This allows us to
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use A∗ as the At in equations Bi
t+1 and H i

t+1 and B∗ as our value for Bt in the equation H i
t+1.

To represent the densities of the three cells for each time stamp, we have our first-order
Discrete Proton Therapy Model.
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Where i represents the depth of tissue in mm, t represents the time at each step in
hours, and both i, t ∈ Z. MA,MB are the relative carrying capacities for A,B and kA, kH
are the intrinsic growth rates for A,H. P i

t represents the dose or proton therapy and dA, dH
represents A,H diffusing.

Recall, we removed the diffusion variables, assumed a constant i = 1 mm, used time
scale separation, and assumed Pt is a constant. Therefore our simplified equations are

At+1 = At + kAAt

(
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MA

)
− AtPt (1)
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)
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3 Stability of Fixed Points

Finding fixed points for our model and analyzing their stability will help us to see how
various proton therapy dosages (Pt) will effect the densities of the different types of cells. A
fixed point indicates that the cell density is not changing and has reached a steady state. For
both types of cancer cells, A and B, this steady-state would indicate that a tumor is neither
growing or shrinking, therefore remaining constant in size. For H cells, this would indicate
that the of level healthy cells is neither increasing nor decreasing. A Pt level that is too low
could cause levels of cancer cells to reach an equilibrium at a high level of cancer cell density,
indicating that the tumor would grow very large before stopping. And therefore, because
the cancer cells grow much faster than the healthy cells, the cancer cells will over power
the healthy cells leading to death. On the contrary, a Pt level that is too high may cause
cancer cells to stop growing at a lower density, but this could affect healthy cells negatively
by causing healthy cells to also stop growing at a lower density.
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A stable fixed point would indicate that the equilibrium is attracting, therefore the cell
density level would continue to reach that equilibrium despite small increases or decreases
in cell density levels, which are dependent on Pt . An unstable fixed point, or repelling
equilibrium, would mean that small levels of change in cell density could cause the cell levels
to rapidly increase or decrease.

3.1 Cancer Stem Cells

Equation (1)

In order to find A∗ we have to set

At+1 = A∗, At = A∗

A∗ = A∗ + kAA
∗(1− A∗

MA

)− A∗Pt

A∗ =

{
0

MA

(
1− Pt

kA

)
To analyze whether the fixed point is stable we have to find the derivative of the difference

equation given by:

f ′(At) = 1− kA − Pt −
2kAAt

MA

To determine the stability of a fixed point we can compute:

f ′(A∗) = 1− kA − Pt −
2kA
MA

f ′(0) = 1− kA − Pt

|f ′(0)| < 1, satisfies the stability criterion

kA < Pt < KA + 2, is stable when A∗ = 0

f ′(A∗) = 1− kA + Pt, when A∗ > 0

|f ′(A∗)| < 1, satisfies the stability criterion

kA − 2 < Pt < KA, is stable when A∗ > 0

3.2 Non-proliferating Stem Cells

Equations (2)

To find the fixed points for non proliferating cancer cells, B, let Bt+1 = Bt = B∗, and let
At = A∗. Therefore, the fixed point is given by

B∗ =
(A∗)2 ·MB · kA

kA · (A∗)2 +MA ·MB · Pt
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To analyze stability, we must find the derivative of the difference equation Bt+1. This is
given by:

f ′(B) = 1− (A∗)2kA
MAMB

− Pt

To determine the stability of the a fixed point, we can compute:

f ′(B∗) = 1− (A∗)2kA
MAMB

− Pt

According to Theorem 4.1, a stable fixed point satisfies:

|f ′(B∗)| < 1

Thus, we have
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− Pt| < 1
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− Pt < 1

By simplifying the inequality, we get
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< Pt < 2− (A∗)2kA
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Therefore, the equilibrium is stable when
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MAMB
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3.3 Healthy Cells

Equations (3)

Now we want to find the fixed points for the density of healthy cells.

Let, H∗ = Ht+1 = Ht, A
∗ =At, B

∗ = Bt

⇒ H∗ = H∗ + kHH
∗
(
1− H∗
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)
−H∗Pt.

Then solving for H∗, we get

⇒ H∗
1 = 0, H∗

2 =
(1− A∗ −B∗) (kH − Pt)

kH
.
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Using our previously found fixed points, we can plug in the respective A∗, B∗ to dive
more into our second fixed point H∗

2 .
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⇒ H∗
2 =

kH − P

kH
.

And if A∗ = MA

(
1− P

kA

)
⇒ B∗ =

(
MA

(
1− P

kA

)2)
MAkA

kA

(
MA

(
1− P

kA

))2
+MAMBP

,

⇒ H∗
2 =

(kH − P )

(
MA

(
P
kA

− 1
)
−

kAM2
AMB

(
P
kA

−1
)2

MAMBP+kAM2
A

(
P
kA

−1
)2

)
kH

⇒=

(
(kH − P )

(
k3
AMA − 2k3

AM2
A + M2

AP3 − 4kAM2
AP2 + 5k2

AM2
AP + kAMAP2 − 2k2

AMAP + k2
AMBP + kAMAMBP2 − k2

AMAMBP
))

(
kAkH

(
k2
A
MA + MAP2 − 2kAMAP + kAMBP

))

So, unlike the fixed points to the other types of cells, the healthy cells will always
have at least one equilibrium H∗ = 0. The body is always guaranteed healthy cells until we
approach death. Since we are using time scale separation, we will always have a second equi-
librium depending on which previous fixed points we use. Even if we were not implementing
time scale separation, our map has a bounded time interval (we are specifically choosing the
start and finish time of the simulation), so we are guaranteed a second equilibrium.

Now, find the stability of H∗ by using theorem 4.1.

Let Ht+1 = F (H),

F (H) = H + kHH

(
1− H

1− A∗ −B∗

)
−HP

F ′(H) = 1 + kH − 2kHH

1− A∗ −B∗ − P

The equilibrium is stable when |F ′(H∗)| < 1

⇒|F ′(H∗)| =

{
|F ′(H∗

1 )| = |kH − P + 1|
|F ′(H∗

2 )| = |P − kH + 1|
After reducing, we solve the inequality to determine the necessary dosage for healthy cells to be stable

⇒ H∗ =

{
0, stable if kH < P < 2 + kH
(1−A−B)(kH−P )

kH
, stable if kH − 2 < P < kH .

We can see that although we found two different equations for the healthy cell’s second fixed
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point depending on which cancer cells fixed points we choose, both H∗
2 are stable under the

same conditions.

4 Simulations

Parameters

Parameter Value

kA Cancer cell growth rate (hours−1) 3
kH Healthy cell growth rate (hours−1) 2
MA Relative carrying capacity of A cells in 1 mm layer of tissue 1
MB Relative carrying capacity of B cells in 1 mm layer of tissue 2
A0 Initial density of A 0.1
B0 Initial density of B 0.1
H0 Initial density of H 0.8

4.1 Cancer Stem Cells

4.1.1 Cobweb Diagrams

Figure 1: This cobweb show us the behavior at t = 1 and layer i = 1. When Pt = 3 and
kA = 3
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Figure 2: This cobweb show us the behavior at t = 1 and layer i = 1. When Pt = 1.1 and
kA = 3

Figure 3: This cobweb show us the behavior at t = 1 and layer i = 1. When Pt = 4.9 and
kA = 3

The goal is to demonstrate in the cobwebs is what the behavior is of At when
we produce a therapy strength that lies close to the boundaries of the stability
criterion. We assume the cobwebs are a screenshot of a fixed time and fixed
layer. For this situation since we are not calculating the proton strength as is
travels through each layer and repeated dosages we can assume t = 1 and i = 1.
Figure 1 is special because the cobweb doesn’t explicitly show a convergence or
divergence.

7



4.1.2 Bifurcation Diagram

Figure 4: This diagram uses the fixed parameters kA = 3, MA = 1, and a varying therapy
strength 0 < Pt < 6 to demonstrate the long term behavior of At when a constant therapy
strength is applied.

This bifurcation shows us the long term behavior of At when the therapy is
applied constantly ever hour for one layer, in this case layer i = 1. Earlier we
looked at figure 1 when the therapy strength equaled the growth rate, Pt = kA.
The bifurcation shows us here that we experience a transcritical point. This
means once we pass the threshold when Pt = kA the stability of our fixed points
are being exchanged, which is why when we look at cobweb at that point, we
can’t tell if it is converging or diverging. A∗ > 0 are stable until Pt = kA then
becomes unstable. Also A∗ = 0 is unstable until Pt = kA, then becomes stable.
We must stay in the stability criterion, because there are fixed points, A∗ that
make At go to zero or even oscillate, which does not make sense biologically. A
therapy strength of 0.5 hr−1 makes the density of cancer stem cells, At in one
layer go to 0.5 and 1. This just shows us that the therapy strength is too weak
to allow us to study the behavior of At, which means we can’t tell if the therapy
is working.
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4.2 Non-proliferating Stem Cells

4.2.1 Cobweb Diagrams

Figure 5: This cobweb diagram shows us the behavior of B cells at t = 1 and layer i = 1
when Pt = 1.1 and kA = 3

.

Figure 6: This cobweb diagram shows us the behavior of B cells at t = 1 and layer i = 1
when Pt = 3 and kA = 3

.
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Figure 7: This cobweb diagram shows us the behavior of B cells at t = 1 and layer i = 1
when Pt = 4.9 and kA = 3 .

In the cobweb diagrams, we demonstrate the behavior of Bt at a fixed time,
cell layer, and therapy strength. We used an initial condition of Bt = 0.1. We
show three different values for Pt: the first where Pt < kA, the second where
Pt = kA, and the third where Pt > kA. All three diagrams appear to display
unstable fixed points, as the the cobweb diagrams show the cobweb spiraling
outward around the intersection between F (B) and y = x. Intersections, or
fixed points, occur at B∗ = 0.92683, B∗ = 0, and B∗ = −0.48101, respectively.
Although axis limits show ranges in negative values in order to more clearly
see the behavior of the spiral, the domain of all variables is between [0,∞), so
negative fixed points should be neglected.
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4.2.2 Bifurcation Diagram

Figure 8: This bifurcation diagram uses the fixed parameters kA = 3, MA = 1, and a varying
therapy strength 0 < Pt to demonstrate the long term behavior of Bt when a constant
therapy is applied every hour.

The bifurcation diagram for B cells shows the long term behavior of Bt for varying values
of proton therapy dose (Pt), where Bt is cell density and Pt is in hr−1 units. We assume
proton therapy is applied every hour at a cell depth of i = 1 mm. As therapy strength
increases, the long-term value of Bt decreases up until a value of around 1.74 hr−1, where
the values of Bt begin to vary unpredictably between very large positive and negative values
of Bt. This can be interpreted as increased proton therapy strength successfully lowering
non-proliferating cancer cell density up until a certain point, where a value of Pt exceeding
this threshold begins to result in unpredictable, chaotic behavior in B cell density. Proton
therapy treatment above that point would not be ideal for a patient, as increases in Pt could
result in unpredictable growth or death of B cells.

4.3 Healthy Cells

4.3.1 Cobweb Diagrams

For all cobwebs, dotted black represents y(x) = x, dark blue represents y = F (H), red
has H0 = 0.8, purple has H0 = 0.1, and light blue has H0 = −0.1. I used kH = 6 to see how
the dosage of therapy effects both fixed points. Although it is unrealistic to have a negative
amount of initial healthy cell density, I wanted to display more on what’s happening at the
fixed point. Since we used time scale separation and plugged in the previously found fixed
points, I wanted to show how choosing different fixed points would effect the healthy cells.
Therefore, the cobwebs on the left use A∗

1 = 0, B∗
1 = 0 and the cobwebs on the right use A∗

2, B
∗
2
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Figure 9: The fixed points for both cobwebs were H∗
1 = −1.8e−21, H∗

2 = 0.5, where H∗
1 is

semi-stable from below, and H∗
2 is a reseller.

Figure 10: The fixed points for the left cobweb were H∗
1 = −6.03e−22, H∗

2 = 0.167 and the
fixed points for the right were H∗

1 = −1.06e−16, H∗
2 = 0.258, where both H∗

1 are semi-stable
from the left and both H∗

2 are repellers.

[H]
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Figure 11: The fixed points for the left cobweb were H∗
1 = −0.167, H∗

2 = 6.03e−22 and the
fixed points for the right were H∗

1 = −0.343, H∗
2 = −1.76e−16. Both H∗

1 are repellers, and
H∗

2 are attractors.

Since physically, bodies cannot have a negative amount of healthy cells, we can
conclude the densities of healthy cells stayed at zero as time went on. Many of the other
fixed points were exponentially small, which is also unrealistic for a living body, so we can
conclude these too approach zero over time. This leaves us with only three viable fixed
points of healthy cells with large enough densities to fight back the cancer. This shows how
important it is to be at the target depth. I want to take note that even though we used
different A∗, B∗, the cobwebs for healthy cells were still about the same implying as long as
the cancer cells are stable, the stability of the healthy cells is the same. When considering
the real world, this makes sense. We can also notice that there was always a fixed point
relatively close to zero that was attracting. Whether or not people have cancer, we have
healthy cells that are dying and we all eventually die.
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4.3.2 Bifurcation Diagram

Figure 12: The first Bifurcation follows our simulation using P = (0, 4). Our chosen P
values fit perfectly with the necessary bounds for the healthy cells to be stable when kH = 2,
so we can’t get too much information. The right bifurcation I used P = (3, 9) and assumed
kH = 6 to better show the change of stability.

The left bifurcation diagram of the healthy cells show the long term behavior of density
depending on the dosage of proton therapy P applied every hour. If 1.5 < P < 1.75, the
density increasing, meaning the therapy is very effective. If 1.75 < P < 2, the density is
decreasing, implying the therapy is not effective at all and leading to death. Then from
2 < P < 3.8, the density is staying constant, meaning the dosage is ”good enough” to stop
the cancer from growing too fast; however, the cancer is still growing. Once P > 3.8, the
density is unpredictable. Therefore, for our simulation, it’s optimal to use a dosage between
1.5 < P < 1.75. This makes sense because kH = 2 For the right bifurcation diagram, a
dosage of P > 4 is needed in order for the healthy cells not to go to 0. This makes sense
because kH = 6. (Recall from finding the stability of the fixed points previously).

5 Discussion/Conclusion

There could be a possible range of therapy strength that is safe to the patient.
Assuming giving a dose every hour safe and ethical. The figure 13 shows us a
therapy strength in the range from (1.5, 1.75) that could work to help reduce
cancer stem cells and non-proliferating cancer cells, while minimizing damage
to the density of health cells in the one layer of tissue. In the diagram we can
see the density of healthy cells in one layer go to zero until the therapy reaches
about 1.5. This is the case, because before Pt = 1.5 the therapy is too weak this
implies the layer of tissue is packed with non proliferating cells and cancer stem
cells. We can assume the layer tissue is dead.
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Figure 13: This diagram shows an overlap off all past bifurcations for cancer stem cells,
non-proliferating cells, and healthy cells.

In this model, proton therapy is applied every hour, which is most likely
not realistic or ethically feasible in a clinical setting. Our analysis is limited
to a single, fixed tissue depth (layer i).To simplify the dynamics, we applied a
technique known as Time Scale Separation, allowing us to study the long-term
behavior of each population under constant conditions.
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